Sub. Code

**12** 

## DISTANCE EDUCATION

# COMMON FOR B.A./B.Sc./B.B.A./ B.B.A.(Banking)/B.C.A./M.B.A. (5 Year Integrated) DEGREE EXAMINATION, MAY 2019.

## First Semester

## Part II — ENGLISH PAPER I

(CBCS – 2018-19 Academic Year Onwards)

Time: Three hours Maximum: 75 marks

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

# Answer ALL questions.

- 1. Why is Egypt called the "Gift of The Nile?"
- 2. Who accompanied Mrs. Packletide on her hunting expedition?
- 3. Why was Haria not given a reward for his bravery?
- 4. What does the mother cat do, when it has only one kitten?
- 5. Mention any two things that have killed the art of letter-writing.
- 6. Which organization was formed to prevent war among nations?

| 7.  | During which 'Age' were forests replaced by grassland? |  |
|-----|--------------------------------------------------------|--|
| 8.  | Whose writing influenced Gandhi very much?             |  |
| 9.  | Mention any one side effect caused by drugs.           |  |
| 10. | What can vegetarians eat and drink to get proteins?    |  |
|     | $PARTR$ $(5 \times 5 - 25 \text{ marks})$              |  |

 $(5 \times 5 = 25 \text{ marks})$ 

Answer ALL questions.

How does A. G. Gardiner describe the letter-writing 11. (a) style of Carlyle and Keats?

Or

- (b) Describe the hunting of the tiger by Mrs. Packletide.
- 12. What does Joad say about 'order and safety' of (a) modern civilization?

Or

- (b) Give an account of life on earth 65 million years ago.
- Write a note on life in Sabarmathi Ashram. 13. (a)

Or

- (b) Write briefly on the consequences of drug abuse.
- 14. (a) Rewrite as directed:
  - It is annoying to wait for long (i) time. (Use a suitable article)
  - It is illegal to drive without a licence. (Use a (ii) gerund to replace the infinitive and rewrite the sentence.)

D-1228

2

|                     | (iii)                                                | God bless you! (Use the appropriate modal)                                                         |  |  |
|---------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
|                     | (iv)                                                 | Sheela said, "I met my friend, Raji yesterday".<br>(Change into indirect speech)                   |  |  |
|                     | (v)                                                  | I sent a cheque. (Change into passive voice)                                                       |  |  |
| $\operatorname{Or}$ |                                                      |                                                                                                    |  |  |
| (b)                 |                                                      | in the blanks with the appropriate tense forms e verbs given within brackets:                      |  |  |
|                     | (i)                                                  | Joseph ———— (grow) a beard now.                                                                    |  |  |
|                     | (ii)                                                 | Valli — (forget) to wind the clock last night.                                                     |  |  |
|                     | (iii)                                                | My sister ——— (love) cats.                                                                         |  |  |
|                     | (iv)                                                 | I ———— (see)him twice since six'o clock.                                                           |  |  |
|                     | (v)                                                  | Miriam — (write) lyrics for film songs for the past ten years.                                     |  |  |
| (a)                 | Write a paragraph on the topic, "My favourite book". |                                                                                                    |  |  |
|                     |                                                      | Or                                                                                                 |  |  |
| (b)                 | comp                                                 | e a letter to the manager of a store, making plaints about the refrigerator, you bought from shop. |  |  |
|                     |                                                      | PART C — $(3 \times 10 = 30 \text{ marks})$                                                        |  |  |
|                     |                                                      | Answer any THREE questions.                                                                        |  |  |
| Why                 | does                                                 | C.V. Raman describe water as the 'elixir of                                                        |  |  |

How does Jim Corbett describe the brave deed of Haria in

3

D-1228

15.

16.

17.

life'?

saving Narwa?

- 18. Elaborate on Catharine M. Wilson's thoughts on 'Cats.'
- 19. Trace the growth and evolution of Gandhi into a political philosopher and leader.
- 20. How does Haldane analyse the importance of food to  $\operatorname{Man}$ ?

Sub. Code 11313

## DISTANCE EDUCATION

B.Sc. (Mathematics) DEGREE EXAMINATION, MAY 2019.

#### First Semester

## CLASSICAL ALGEBRA

(CBCS 2018-2019 Academic Year onwards)

Time: Three hours Maximum: 75 marks

SECTION A —  $(10 \times 2 = 20 \text{ marks})$ 

Answer ALL questions.

- 1. Give the expansion of  $(1-x)^n$ .
- 2. Find the product of the roots of the equation  $2x^4 3x^3 + 3x^2 x + 2 = 0$ .
- 3. State Rolle's theorem.
- 4. Find the number of negative roots of the equation  $x^3 3x + 1 = 0$ .
- 5. Define a column matrix.
- 6. The determinant in which the columns are identical has the value ————.
- 7. Define non-singular matrix.
- 8. If  $A = \begin{pmatrix} 5 & 3 \\ 7 & -4 \end{pmatrix}$ , find  $A^{-1}$ .
- 9. State Cayley Hamilton theorem.
- 10. Define Similar matrices.

SECTION B — 
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Find the coefficient of  $x^n$  is the expansion of  $\frac{x+1}{(x-1)^2(x-2)}.$ 

Or

- (b) Find the equation whose roots are the roots of  $x^5 + 6x^4 + 6x^3 7x^2 + 2x 1 = 0$  with the signs changed.
- 12. (a) Solve  $x^4 + 3x^3 3x 1 = 0$ .

Or

- (b) Find the nature of the roots of  $4x^3 21x^2 + 18x + 20 = 0.$
- 13. (a) Show that  $\begin{vmatrix} 1 & 1+x & 2+x \\ 8 & 2+x & 4+x \\ 27 & 3+x & 6+x \end{vmatrix} = 12x$ .

Or

(b) Given 
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & 4 \\ 5 & 0 & 6 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ , compute  $3A - 4B$ .

14. (a) Find 
$$A^{-1}$$
 if  $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ .

Or

- (b) Find the rank of  $\begin{pmatrix} 3 & 4 & -6 \\ 2 & -1 & 7 \\ 1 & -2 & 8 \end{pmatrix}$ .
- 15. (a) Calculate  $A^4$  if  $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ .

Or

(b) Find the region values of the matrix  $\begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix}$ .

SECTION C — 
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

- 16. Show that the equation  $x^3 + px^2 + qx + r = 0$  are in arithmetic progression if  $2p^3 qpq + 27r = 0$ . Hence solve  $x^3 6x^2 + 13x 10 = 0$ .
- 17. Determine the matrices X and Y from the equations  $X+Y=\begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ ;  $X-Y=\begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$ .
- 18. Find the positive root of the equation  $x^3 2x^2 3x 4 = 0$  correct to three places of decimals.



- 19. Solve 3x y + 2z = 1; x y + z = -1; 2x 2y + 3z = 2.
- 20. Find the characteristics equation of the matrix  $A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}$  and hence determines its inverse.

Sub. Code 11314

## DISTANCE EDUCATION

B.Sc. (Mathematics) DEGREE EXAMINATION, MAY 2019.

## First Semester

## **CALCULUS**

(CBCS 2018-19 Academic Year onwards)

Time: Three hours Maximum: 75 marks

SECTION A — 
$$(10 \times 2 = 20 \text{ marks})$$

Answer ALL the questions.

1. Find 
$$\frac{dy}{dx}$$
 if  $y = x^{\sin x}$ .

2. If 
$$y = x^2 \sin ax$$
, find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$ .

- 3. Verify Euler's theorem for the function  $f = x^3 2x^2y + 3xy^2 + y^3$ .
- 4. Find the envelope of the family of lines y = mx + a/m.

5. Evaluate 
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$
.

- 6. Evaluate  $\int_{0}^{1} \int_{0}^{2} xy^{2} dy dx$ .
- 7. Prove that  $\Gamma(1)=1$ .

- 8. Solve  $\frac{dy}{dx} + \frac{1+y^2}{1+x^2} = 0$ .
- 9. Prove that  $\lfloor (e^{ax}) = \frac{1}{s-a}$  if s-a>0.
- 10. Find the complete integral of  $z = px + qy + p^2 + q^2$ .

SECTION B — 
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL the questions, choosing either (a) or (b).

11. (a) If  $x^y = y^x$  prove that  $\frac{dy}{dx} = \frac{y(y - x \log y)}{x(x - y \log x)}$ .

Or

- (b) If  $y = e^{a \sin^{-1} x}$ , prove  $(1-x^2)y_2 xy_2 a^2y = 0$  where  $y_1 = \frac{dy}{dx}$  and  $y_2 = \frac{d^2y}{dx^2}$ .
- 12. (a) If  $u = \log(\tan x + \tan y + \tan z)$ . Show that  $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$ .

Or

- (b) If  $y = \log \sqrt{\frac{1 + \sin x}{1 \sin x}}$ , prove that  $\frac{dy}{dx} = \sec x$ .
- 13. (a) Find the pedal equation of the curve  $r \sin \theta + a = 0$ .

Or

(b) Find the equation of the tangent to  $y^2 = 4ax$  at  $(at^2, 2at)$ .

2

14. (a) Evaluate  $\int x^3 e^{2x} dx$ .

Or

- (b) Prove that  $\int_{0}^{\pi/2} \sin^5 x \cos^6 x \, dx = \frac{8}{693}$  using Beta and Gamma functions.
- 15. (a) Solve  $\frac{dy}{dx} = \frac{y^3 + 3x^2y}{x^3 + 3xy^2}$ .

Or

(b) Solve 
$$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{z^2}$$
.

SECTION C — 
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

- 16. Prove that  $u=x^3+y^3-3axy$  is maximum or minimum at x=y=a according as 'a' is negative or positive.
- 17. Find the evolute of the parabola  $y^2 = 4ax$ .
- 18. Evaluate  $\iint_D e^{y/x} dx dy$  where D is the region bounded by the straight line's y=x, y=0 and x=1.
- 19. Solve  $y'' + y = \cos ecx$  by the method of variation of parameters.
- 20. Using Laplace transform, solve  $y'' + 4y' + 4y = e^{-x}$  given that y(0) = 0 = y'(0).

D-1259

3

Sub. Code 11323

## DISTANCE EDUCATION

B.Sc. (Mathematics) DEGREE EXAMINATION, MAY 2019.

First Year — Second Semester

## ANALYTICAL GEOMETRY AND VECTOR CALCULUS

(CBCS 2018-2019 Academic Year onwards)

Time: Three hours Maximum: 75 marks

SECTION A —  $(10 \times 2 = 20 \text{ marks})$ 

Answer ALL the questions.

- 1. Define radical axes.
- 2. Find the equation of the circle whose centre is origin and radius 2.
- 3. Write the condition for two straight lines to be perpendicular.
- 4. Find the direction cosines of the line joining two points (3,4,5) and (-1,3,-7).
- 5. Write the general equation of a right circular cone.
- 6. Give the condition that the cone  $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$  has three mutually perpendicular generators.
- 7. Define skew lines.

- 8. Find the centre and radius of the sphere  $x^2 + y^2 + z^2 2x 4y 6z 3 = 0$ .
- 9. Define solenoidal vector.
- 10. Find  $\operatorname{grad} \phi$  when  $\phi = xy^2 + yz^3$ .

SECTION B — 
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Find the angle between the two lines 2x + 3y = 5 and x - y = 2.

Or

- (b) Find the equation of the circle passing through the intersection of  $x^2 + y^2 6 = 0$  and  $x^2 + y^2 + 4y 1 = 0$  and through the point (-1,1).
- 12. (a) Find the equation of the plane passing through (1,1,0),(1,2,1) and (-2,2,1).

 $\operatorname{Or}$ 

- (b) Find the angle between the planes 2x y + z = 6 and x + y + 2z = 7.
- 13. (a) Find the equation of the cone with vertex at the origin and passes through the curve  $ax^2 + by^2 = 2z$ , lx + my + nz = p.

Or

(b) Find the equation of a right circular of radius 2 whose axis is the line  $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ .

14. (a) Find the direction cosines of the line  $\frac{2x+1}{3} = \frac{4y-3}{1} = \frac{2z-3}{0}$ . Also find a point on it.

Or

- (b) Find the shortest distance between the lines  $\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7} \text{ and } \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}.$
- 15. (a) Show that  $div\left(\frac{\vec{r}}{r}\right) = \frac{2}{r}$ .

Or

(b) Prove that  $f = (x^2 - yz)i + (y - zx)j + (z^2 - xy)k$  is irrotational.

SECTION C — 
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

16. Find the circles which cuts orthogonally each of the following circles.

$$x^{2} + y^{2} + 2x + 4y + 1 = 0$$
$$x^{2} + y^{2} - 4x + 3 = 0$$

- $x^2 + y^2 + 6y + 5 = 0.$
- 17. Find the image of the point (2,3,4) under the reflexion in the plane x 2y + 5z = 6.
- 18. Find the equation of a cone whose vertex P is the point  $(\alpha, \beta, \gamma)$  and whose guiding curve is the conic  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ . If the section of this conic by the plane x = 0 be a rectangular hyperbola, find the locus of P.



- 19. Obtain the equation of the sphere having the circle  $S=x^2+y^2+z^2-3x+4y-2z-5=0\,;$   $\pi=5x-2y+4z+7=0 \text{ as a great circle.}$
- 20. Evaluate  $\int_C f \cdot dr$  where  $f = (x^2 + y^2)i 2xyj$  and the curve C is the rectangle in the xy plane bounded by y = 0, y = b, x = 0, x = a.

Sub. Code 11324

## DISTANCE EDUCATION

B.Sc. (Mathematics) DEGREE EXAMINATION, MAY 2019.

First Year — Second Semester

## SEQUENCES AND SERIES

(CBCS – 2018–19 Academic Year onwards)

Time: Three hours Maximum: 75 marks

SECTION A —  $(10 \times 2 = 20 \text{ marks})$ 

Answer ALL the questions.

- 1. Write the first five terms of the sequence  $\frac{2n^2+1}{2n^2-1}$ .
- 2. Prove that the sequence  $(-1)^n$  is not convergent.
- 3. Prove that if  $(a_n) \to a$  and  $(b_n) \to b$  then  $(a_n + b_n) \to a + b$ .
- 4. Show that Lt  $_{n\to\infty} \frac{3n^2 + 2n + 5}{6n^2 + 4n + 7} = \frac{1}{2}$ .
- 5. Show that  $\lim_{n\to\infty} n^{1/n} = 1$ .
- 6. Prove that every bounded sequence has a convergent subsequence.
- 7. State Cauchy's general principle of convergence for an infinite series.

- 8. Show that the series  $1 \frac{1}{5} + \frac{1}{9} \frac{1}{13} + \cdots$  converges.
- 9. State Riemann's theorem.
- 10. Define conditionally convergence of the infinite series with example.

SECTION B — 
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL the questions.

11. (a) Show that if  $(a_n)$  is a monotonic sequence then  $\left(\frac{a_1+a_2+\cdots+a_n}{n}\right)$  is also a monotonic sequence.

Or

- (b) Show that  $\lim_{n\to\infty} (a^{1/n}) = 1$  where a > 0 is any real number.
- 12. (a) Let  $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ . Show that  $(a_n)$  diverges to  $\infty$ .

Or

- (b) Let  $(a_n)$  and  $(b_n)$  be two sequences of positive terms such that  $a_{n+1}=\frac{1}{2}(a_n+b_n)$  and  $b_{n+1}=\sqrt{a_nb_n}$ . Prove that  $(a_n)$  and  $(b_n)$  converge to the same limit.
- 13. (a) A sequence  $(a_n)$  in R is convergent iff it is a cauchy sequence.

Or

(b) Test the convergence of the series  $\frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \cdots$ 

2

14. (a) Test the convergence of  $\sum \left(1 + \frac{1}{n}\right)^{-n^2}$ .

Or

- (b) Using the integral test discuss the convergence of the series  $\sum ne^{-n^2}$ .
- 15. (a) Prove Leibnitz's test. (ie) Let  $\sum (-1)^{n+1}a_n$  be an alternating series whose terms  $a_n$  satisfy the following:
  - (i)  $(a_n)$  is a monotonic decreasing sequence.
  - (ii)  $\lim_{n\to\infty} a_n = 0$ . Then the given alternating series converges.

Or

(b) Show that the Cauchy product of  $1+1+1+1+\cdots$  with itself is the series  $1+2+3+\cdots$ .

SECTION C — 
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

- 16. Prove Cesaro's theorem. (ie) If  $(a_n) \to a$  and  $(b_n) \to b$  then  $\left(\frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n}\right)$  converges to ab.
- 17. Prove that the harmonic series  $\sum \frac{1}{n^p}$  converges if p > 1 and diverges if  $p \le 1$ .



- 18. Prove Cauchy's root test. (ie)  $\sum a_n$  be a series of positive terms. Then  $\sum a_n$  is convergent if  $\lim_{n \to \infty} a_n^{1/n} < 1$  and divergent if  $\lim_{n \to \infty} a_n^{1/n} > 1$ .
- 19. Prove Abel's test. (ie) Let  $\sum a_n$  be a convergent series. Let  $(b_n)$  be a bounded monotonic sequence. Then  $\sum a_n b_n$  is convergent.
- 20. Test the convergence of the series  $\frac{1}{3}x + \frac{1 \cdot 2}{3 \cdot 5}x^2 + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7}x^3 + \cdots$